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The importance of loss in the field solution for left-handed media, and in particular, the impact on what
would otherwise be a purely evanescent field, is addressed. Using an equivalent electric current source, field
solutions are constructed in semi-infinite and finite thickness left-handed media. In the slab case, field growth
and power dissipation metrics with uniform amplitude and uniform power excitation, respectively, provide a
means to evaluate the potential of a left-handed material lens. Power dissipation suggests that field growth will
be adversely impacted.
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The topic of negative refractive index or left-handed(LH)
electromagnetic media, introduced by Vesalago[1], lay dor-
mant until a paper by Pendry suggested that the evanescent
fields in such media may grow with distance[2]. It was
proposed that the growth of the evanescent fields could com-
pensate for the decay in positive refractive index or right-
handed(RH) media, thereby creating the opportunity for
building a perfect lens. Interest accelerated after the experi-
mental demonstration of a LH material at microwave fre-
quencies[3]. This material was fabricated using printed cir-
cuit board conducting elements that formed electric and
magnetic dipoles that were subwavelength in size but which
were designed to collectively operate above their resonance.
These arrays of metal patterns, used to realize a bulk prop-
erty, have become known as metamaterials.

In the case of LH media, we associate the phenomenon
with one of simultaneous resonances in both the ensemble
electric and magnetic field dipole moments, and this implies
concomitant absorptive losses[1]. Equivalently, LH media
are dispersive, with real and imaginary components of the
magnetization(permeability) and polarization(permittivity)
being related by the Kramers-Kronig relations[4]. Therefore,
any meaningful model of a LH medium must be dispersive
and must be lossy. The need to incorporate loss into the field
solution in a LH medium slab problem has been identified
[5]. To counter the deleterious impact of loss on operation,
use of gain media has been proposed[6]. Remaining was the
prospect that, subject to interface scattering, fields may be
able to grow in a LH medium surrounded by RH media. We
provide constraints on this prospect here.

Consider a current sheet in the geometry of Fig. 1 with

Js = x̂J0e
ikx0x s1d

on thez=0 plane. We assume throughout that the time de-
pendence ise−ivt. A unique field solution can be obtained
using the boundary conditions for the tangential fields atz

=0, together with radiation conditions for each region,
whereby waves havingkz associated with an outward Poyn-
ting vectorS=E3H* are selected, whereE is the electric
field andH the magnetic field. The general solution forH
with arbitrarymi andei is
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Consider the lossy case withe1=−e8+ ie9 and e2=e8+ ie9,
where all quantities are positive. The corresponding propa-
gation constants arekz1=−b+ ia andkz2=−b− ia, both rep-
resenting decaying fields away from the source whena.0.
With e9Þ0, the boundary conditionn̂213 sH1−H2d=Js im-
plies that

uHy2ux=0
z=0

= − uHy1
* ux=0

z=0
. s4d

The fields in Eq.(2) are thus well behaved asuzu→`, i.e.,
they decay. Ase9→0 andb→0, Z2/Z1→−1, andHy2

1→`.
In this limit of evanescent fields,Z1+Z2=0, and the field
solution has the character of a resonance. The introduction of
loss thus damps this resonance. To satisfy all boundary con-
ditions when regions 1 and 2 are lossless, the evanescent
field must grow in one domain, which is nonphysical. The
fields in the semi-infinite domains must decay away from the
source and they must carry power away from the source.

To address the potential for field growth in a LH material,
consider the field solution due to a current source within a*Electronic address: webb@purdue.edu
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LH slab of thickness 2d, as in Fig. 2. The geometry is sym-
metric, with 0,z,d being region 1 andz.d region 3. The
solution forH1=Hy1ŷ is

Hy1 = Aeikx0xseikz1z + Ghe
i2kz1de−ikz1zd, s5d

whereGh is the magnetic field reflection coefficient, given by
Gh=sZ1−Z3d / sZ1+Z3d, and A=−J0f2s1+Ghe

i2kz1ddg−1. Field
growth requiresuHy1sddu. uHy1s0du. From Eq.(5), we define
the field growth function

f =
us1 + Ghdeikz1du2

u1 + Ghe
i2kz1du2

. s6d

Field growth therefore occurs forf .1, and the field decays
for f ,1.

Consider the case of some degree of loss, resulting in real
power flow in region 1 and complex wave impedanceZ1
=Z1r + iZ1i. If the loss were small, the solution is perturbed
from what would otherwise have purely evanescent fields.
With the complex reflection coefficientGh= uGhuexpsifd, and
using Eq.(5) and the correspondingE1, the Poynting vector
expressions evaluated atz=d fSsddg and atz=0 fSs0dg are

Ssdd =
uAu2

2
e−2adfZ1rs1 − uGhu2d + 2Z1iuGhusinsfdg, s7d

Ss0d =
uAu2

2
fZ1rs1 − uGhu2e−4add + 2Z1ie

−2aduGhusinsf − 2bddg,

s8d

where kz1=−b+ ia. The conditionsSsddøSs0d, and Ssdd
ù0 andSs0dù0 must hold. We consider a normalized Poyn-
ting vector of the form

Sns0d =
Ss0d

uSs0dukx0=0
, s9d

i.e., Ss0d in Eq. (8) is normalized to the power density in the
normal propagating wave.

Let the constitutive parameters for regions 1 and 3 bee1
=−e18+ ie19, e3=e8, m1=−m8, and m3=m8. In this case,Ssdd
=0, with evanescent fields in region 3. For convenience, we
assume thatm19=0. To facilitate generality, we define the nor-
malized variables

a =
k3

a3
, s10d

d =
se18 − e8d − ie19

e8
= dr − idi , s11d

D = a3d, s12d

p = k3d, s13d

wherek3=vÎm8e8 is the wave number in region 3 and, for
kx0.k3, a3= uÎk3

2−kx0
2 u is the attenuation coefficient for the

evanescent field in region 3. Givenk3, p becomes a normal-
ized slab thickness parameter. Also, from Eqs.(10), (12), and
(13), p=aD. For a givenk3 and e8, all field characteristics
can be described by the four variablesa, dr, di, andp or D.

Figure 3 showsf andSns0d for low loss[di =10−3 in Figs.
3(a) and 3(b)] and high loss[di =10−1 in Fig. 3(c)] as a func-
tion of the normalized length parameterp. Figure 3(a) shows
the casea=1, wherea3=k3, and Figs. 3(b) and 3(c) give the
result fora=0.1. Decreasinga values correspond to evanes-
cent plane waves in region 3 having larger attenuation coef-
ficients, and a→` when a particular plane wave goes
through cutoff. Resonant features occur for bothfspd and
Sns0,pd. The peakSns0d is significantly higher fora=0.1,
and occurs for smaller values ofp. The maximumf occurs
for largerp than that forSns0d. For effective field growth, we
require largef and smallSns0d. For a givena there is a range
of fspd where field growth and moderate dissipation can oc-
cur. However, comparing the results fora=1 anda=0.1, it
becomes clear that this lower-loss growth regime cannot ap-
ply to all evanescent plane waves in region 3.

To understand the impact of the power dissipation in Fig.
3, and to place a measure onuf u, we relate the problem of
Fig. 2 to the LH lens application. The sheet current source
Jsskxd in Fig. 2 is an equivalent source for the fields in the
half-space comprised of a lens of thicknessd (region 1) and
the free space image region(region 3). With planar surfaces,
the plane wave spectrum is decoupled, i.e., the scattering
problem can be separated into a superposition of solutions

FIG. 1. Current source at the interface between a right-hand
(RH) and left-hand(LH) material system.

FIG. 2. Current source centrally located in a slab of thickness
2d.
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for each incident propagating or evanescent plane wave from
the object. The finite power from the object can thus be
written as the superposition of powers in each plane wave
field expansion term. Therefore, the normalized Poynting
vector for the true object total field atz=0 can be written as

Sons0d = zSns0d, s14d

wherez correctly scales each plane wave solution according
to the physical object power density, andSns0d is given by
(9). The object field is thus

Hoy1 = z1/2Hy1, s15d

where Hy1 is given by Eq.(5) and z1/2=fSons0d /Sns0dg1/2.
Consequently, in the solution of the complete scattering
problem for each plane wave, those with highSns0d in Fig. 3
would have small field amplitudes in the image half-space.

Therefore, increasingSns0d for fields that do not propagate in
region 3 places more of the spectrum below a given detector
noise floor.

For a perfect lens, the field growth in the LH lens must
compensate for the decay of the evanescent field in the object
and image regions. For a lens of thicknessd, the sum of the
distances from the lens to the object and image planes is also
d, and the required field growth can be described by

r = e2a3d, s16d

so thatr = f is necessary for each evanescent plane wave to
achieve perfect lensing. Figure 3 showsrspd for each case. In
Fig. 3(a), for low loss and a low-order field closer to cutoff,
there is a smallp window wheref < r and Sns0d is not ex-
tremely large. However, perfect lensing is precluded under
all circumstances when there is any degree of loss.

Figure 4 further explores the impact of loss on the nor-
malizedf / r spectrum. Figure 4(a) showsf / r as a function of
kx0/k3, under the assumption of a uniform current spectrum
at z=0. Increasingp reduces the plane wave spectrum over
which f / r ,0 dB (we could, for example, define a 3 dB
bandwidth). To illustrate the impact of the loss further, Fig.
4(b) shows the field spectrum normalized toSns0d for each
kx0 component, i.e., assuming a uniform power spectrum and
using the power dissipated in the decaying wave normalized

FIG. 3. Normalized Poynting vectorSns0d [defined in Eq.(9)]
and field growthf [from Eq. (6)] as a function of normalized slab
thicknessp [defined in Eq.(13)] for (a) low loss and a low-order
decaying field,(b) low loss and a high-order decaying field, and(c)
high loss and a high-order decaying field. Dashed lines:Sns0d.
Crosses: perturbational result in Eq.(17). Solid line: f. Dotted-
dashed line: required field growthr. Circles: perturbational result in
Eq. (20).

FIG. 4. Spectrum of the decaying field[f from Eq. (6) and r
from Eq.(16)] at z=d under two different assumptions with various
p, with dr =0 anddi =10−3, as defined in Eqs.(10)–(13). (a) A uni-
form current spectrum is assumed atz=0. (b) A uniform normalized
power spectrum is assumed atz=0. Solid lines: numerical simula-
tion. Circles: perturbational result from Eqs.(17) and (20).

METRICS FOR NEGATIVE-REFRACTIVE-INDEX MATERIALS PHYSICAL REVIEW E70, 035602(R) (2004)

RAPID COMMUNICATIONS

035602-3



to the power in the normally incident field atz=0. Therefore,
in this case,z=Sn

−1s0d. This power normalization more
clearly demonstrates the adverse impact of perturbational
loss on the potential field growth.

Equation (9), under the assumption thatdr =0, a2di !1
(perturbational loss and the plane wave not near cutoff), and
Da2di !1 (sufficiently small thickness), can be approximated
as

Sns0d =
8e−2Ds1 − e−2Dd

as2 + a2ddi
. s17d

Using Eq.(17), the maximum ofSns0d occurs when

DSns0dmax
=

1

2
ln 2 s18d

or p=sa/2dln 2, and the value at the maximum is

Sns0dmax=
2

as2 + a2ddi
. s19d

Use of Eq.(17) predicts the location and value ofSns0dmax

for the parameters used in Fig. 3 nicely. We find it remark-
able that the value ofDSns0dmax

is a constant. Under the same
assumptions(dr =0, a2di !1 andDa2di !1), the field growth
function in Eq.(6) becomes

f = F 16

s2 + a2d2di
2e−2DGF1 +

16

s2 + a2d2di
2e−4DG−1

. s20d

Using Eq.(20), the maximum off occurs at

Dfmax
=

1

2
ln

4

s2 + a2ddi
, s21d

and the value at the maximum is

fmax=
2

s2 + a2ddi
. s22d

From Eqs.(19) and(22), fmax=aSns0dmax. FromDSns0dmax
and

Dfmax
, the ps=aDd window for field growth while keeping

low energy dissipation is a function of both the evanescent
field attenuation constant(throughkx0) and the material loss.
The results using the approximations in Eqs.(17) and (20)
are shown as circles and crosses in Fig. 3. Figures 4(a) and
4(b) also show the good agreement between the perturba-
tional treatment of Eqs.(17) and (20) (circles) and the nu-
merical simulation(solid lines).

Field growth with propagating fields can occur in either
RH, or LH materials when standing waves occur. In the case
of decaying fields in LH media, field growth in finite do-
mains is not excluded based on conservation of energy
through the Poynting vector. One must therefore conclude
that it is plausible that field decay in RH media can be com-
pensated to some degree by LH media with appropriate pa-
rameters. The degree to which this can be accomplished is a
function of the lens material and geometry, and this can be
evaluated using power and field growth metrics. Our under-
standing of LH material implies that there must be some loss.
Unfortunately, any amount of loss in the LH material will
preclude the possibility of a perfect lens. It may, however, be
possible to build a better lens using LH material. In the case
of a curved surface to achieve magnification, by assuming a
locally planar geometry, i.e., a large radius of curvature, the
conclusions regarding field growth in the planar geometry
apply.
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