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Metrics for negative-refractive-index materials

K. J. Webb*?* M. Yang! D. W. Ward? and K. A. NelsoA
School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue,
West Lafayette, Indiana 47907-2035, USA
2Depar’[ment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139-4307, USA
(Received 31 March 2004; published 27 September 004

The importance of loss in the field solution for left-handed media, and in particular, the impact on what
would otherwise be a purely evanescent field, is addressed. Using an equivalent electric current source, field
solutions are constructed in semi-infinite and finite thickness left-handed media. In the slab case, field growth
and power dissipation metrics with uniform amplitude and uniform power excitation, respectively, provide a
means to evaluate the potential of a left-handed material lens. Power dissipation suggests that field growth will
be adversely impacted.
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The topic of negative refractive index or left-handédl) =0, together with radiation conditions for each region,
electromagnetic media, introduced by Vesalgp lay dor-  whereby waves havinl, associated with an outward Poyn-
mant until a paper by Pendry suggested that the evanesceling vector S=E X H* are selected, wher& is the electric
fields in such media may grow with distan¢®]. It was field andH the magnetic field. The general solution fdr
proposed that the growth of the evanescent fields could conwith arbitrary w; and ¢; is
pensate for the decay in positive refractive index or right-

handed(RH) media, thereby creating the opportunity for %

building a perfect lens. Interest accelerated after the experi- I Z gl (koxth?)

mental demonstration of a LH material at microwave fre- v 022 ’

quencieq3]. This material was fabricated using printed cir- Z_1 +1

cuit board conducting elements that formed electric and

magnetic dipoles that were subwavelength in size but which _

were designed to collectively operate above their resonance. Hyo=Jo g (ko) (2
These arrays of metal patterns, used to realize a bulk prop- 221

erty, have become known as metamaterials. Z

In the case of LH media, we associate the phenomeno - 2_12 1= 1 :
with one of simultaneous resonances in both the ensemblaelhereké k=Ko and22 kz%/(wez)' Given Eq.(2),

electric and magnetic field dipole moments, and this implies k.1

concomitant absorptive loss¢$]. Equivalently, LH media Ea=—"H. (€)]
. . . . . 2 wel 2

are dispersive, with real and imaginary components of the >

magnetization(permeability and polarizationpermittivity) . i e,
being related by the Kramers-Kronig relatigd$. Therefore, Consider the Io_s;y case W'*.l_ e'+ie’ and 62_6.+'6J'
any meaningful model of a LH medium must be dispersiveWhere all quantities are positive. The corresponding propa-
and must be lossy. The need to incorporate loss into the fielg:stg)rﬂiﬁon;éiztﬁna'%lelz d_sﬂgv:/g a{:g#ﬁi;i ;:J?(’:ebcv)\}}g;r%) i
solution in a LH medium slab problem has been identifie 9 ying y '

[5]. To counter the deleterious impact of loss on operation ith €' #0, the boundary conditionz; X (H;~H)=Js im-

use of gain media has been propof&d Remaining was the plies that

prospect that, subject to interface scattering, fields may be Hy2|><=O =- H;1|X=0. (4)
able to grow in a LH medium surrounded by RH media. We z=0 z=0

provide constraints on this prospect here. The fields in Eq.(2) are thus well behaved 38—, i.e.,

Consider a current sheet in the geometry of Fig. 1 with they decay. As”"—0 and8—0, Z,/Z; — -1, andHy%—mc.
_ In this limit of evanescent fieldsZ,+Z,=0, and the field

Js= R0 (1) solution has the character of a resonance. The introduction of
loss thus damps this resonance. To satisfy all boundary con-
ditions when regions 1 and 2 are lossless, the evanescent
field must grow in one domain, which is nonphysical. The
fields in the semi-infinite domains must decay away from the
source and they must carry power away from the source.

To address the potential for field growth in a LH material,

*Electronic address: webb@purdue.edu consider the field solution due to a current source within a

on thez=0 plane. We assume throughout that the time de
pendence i€'“t. A unique field solution can be obtained
using the boundary conditions for the tangential fieldz at
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‘X . A 2
[ IsxIgeloor S(0) = %[zlr(l - [P + 22,72y sin( - 240)],
kz,Sz

E)| k E, ®

\8/ where k,;=—B+ia. The conditionsS(d)<S(0), and S(d)
H, H, S =0 andS(0) =0 must hold. We consider a normalized Poyn-

1, ., ting vector of the form
RHM LHM 5(0)= S0 | ©
S0)]k =0

FIG. 1. Current source at the interface between a right-hand
(RH) and left-handLH) material system. i.e., S(0) in Eqg. (8) is normalized to the power density in the
normal propagating wave.

LH slab of thickness @, as in Fig. 2. The geometry is sym- Lgt _the constitutive parameters for regions 1 and *pe

metric, with 0<z<d being region 1 and>>d region 3. The =—€1*i€l, €=€', uy=—p', and uz=p'. In this case,S(d)

solution forH;=H,J is =0, with evanescent fields in region 3. For convenience, we
assume that]=0. To facilitate generality, we define the nor-
malized variables

H., = Aékxox eikzlz+ T eiZkzlde_ikzlz), 5 k

yl ( h ( ) a= _3, (10)

as

wherel’, is the magnetic field reflection coefficient, given by (€ —€)-ie!
IhW=(Z1-Z3)/(Z,+Z5), and A=-J[2(1+T,€%a%]L. Field s=—t——1=5-is (11

growth requiregHy,(d)|>|H,(0)|. From Eq.(5), we define €
the field growth function D= aud, (12)
(1 +T)ekad)? p=ksd, (13
= |1+ e2ad2” 6) whereks=wu'€' is the wave number in region 3 and, for

keo>Ks, as=|Vk3—k%)| is the attenuation coefficient for the
evanescent field in region 3. Givég, p becomes a normal-
Field growth therefore occurs fdr>1, and the field decays 12€d slab thickness parameter. Also, from E@$), (12), and

for f<1. (13), p=aD. For a givenks and €', all field characteristics
Consider the case of some degree of loss, resulting in re&fn b€ described by the four variab&ss, 4, andp or D.
power flow in region 1 and complex wave impedare Figure 3 showd and$,(0) for low loss[§=10"in Figs.

=7,,+iZy. If the loss were small, the solution is perturbed 3(&) and 3b)] and high losg=10"" in Fig. J(c)] as a func-
from what would otherwise have purely evanescent fieldstion of the normalized length parameferFigure 3a) shows
With the complex reflection coefficiett,=|I',Jexp(i¢), and ~ the case=1, wherea;=k;, and Figs. &) and c) give the
using Eq.(5) and the corresponding,, the Poynting vector esult fora=0.1. Decreasing values correspond to evanes-

expressions evaluated z¢d [S(d)] and atz=0[S(0)] are cent plane waves in region 3 having larger attenuation coef-
ficients, anda—c when a particular plane wave goes

through cutoff. Resonant features occur for bdtp) and
A2 S,(0,p). The peakS,(0) is significantly higher fora=0.1,
S(d) = —e 2297, (1 = |T]>) + 2Z4|T}lsin(¢)],  (7)  and occurs for smaller values pf The maximumf occurs
2 for largerp than that forS,(0). For effective field growth, we
require largef and smallS,(0). For a givera there is a range
of f(p) where field growth and moderate dissipation can oc-
cur. However, comparing the results fac1 anda=0.1, it
becomes clear that this lower-loss growth regime cannot ap-
@ @ @ @ ply to all evanescent plane waves in region 3.
To understand the impact of the power dissipation in Fig.
3, and to place a measure ¢ff, we relate the problem of
Fig. 2 to the LH lens application. The sheet current source
1 T >z Jy(k,) in Fig. 2 is an equivalent source for the fields in the
: { half-space comprised of a lens of thicknesgegion 1 and
the free space image regigregion 3. With planar surfaces,
FIG. 2. Current source centrally located in a slab of thicknes¢he plane wave spectrum is decoupled, i.e., the scattering
2d. problem can be separated into a superposition of solutions

x B
1, J=RIgeln0x
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FIG. 4. Spectrum of the decaying fie[d from Eq. (6) andr
from Eq.(16)] atz=d under two different assumptions with various
p, with 6,=0 and§=1073, as defined in Eqg10)—(13). (a) A uni-
form current spectrum is assumedzat0. (b) A uniform normalized
power spectrum is assumedzt0. Solid lines: numerical simula-
tion. Circles: perturbational result from Eq4.7) and(20).

Therefore, increasing,(0) for fields that do not propagate in
region 3 places more of the spectrum below a given detector
noise floor.

For a perfect lens, the field growth in the LH lens must
high loss and a high-order decaying field. Dashed lirg¢). ~ compensate for the decay of the evanescent field in the object
Crosses: perturbational result in EQ.7). Solid line: f. Dotted- ~ @nd image regions. For a lens of thicknesshe sum of the
dashed line: required field growth Circles: perturbational resultin  distances from the lens to the object and image planes is also
Eq. (20). d, and the required field growth can be described by

FIG. 3. Normalized Poynting vectd,(0) [defined in Eq.(9)]
and field growthf [from Eqg. (6)] as a function of normalized slab
thicknessp [defined in Eq.(13)] for (a) low loss and a low-order
decaying field(b) low loss and a high-order decaying field, ajcgl

— 2aqd
for each incident propagating or evanescent plane wave from r=erl, (16)

the object. The finite power from the object can thus beso thatr=f is necessary for each evanescent plane wave to

Schieve perfect lensing. Figure 3 showp) for each case. In
q:ig. 3a), for low loss and a low-order field closer to cutoff,
there is a smalp window wheref=r and §,(0) is not ex-
Son(0) = £S,(0), (14)  tremely large. However, perfect lensing is precluded under

. . all circumstances when there is any degree of loss.
where( correctly scales each plane wave solution according Figure 4 further explores the impact of loss on the nor-

to the phy§|cal ije(_:t power density, agl0) is given by malizedf/r spectrum. Figure @) showsf/r as a function of
(9). The object field is thus keo!ks, under the assumption of a uniform current spectrum
Hy., = Y2 (15) at z=0. Increasingp reduces the plane wave spectrum over
oy yi which f/r~0 dB (we could, for example, define a 3 dB
where Hy; is given by Eq.(5) and {*?=[S,,(0)/S,(0)]%2  bandwidth. To illustrate the impact of the loss further, Fig.
Consequently, in the solution of the complete scatteringl(b) shows the field spectrum normalized $9(0) for each
problem for each plane wave, those with higff0) in Fig. 3 k,, component, i.e., assuming a uniform power spectrum and
would have small field amplitudes in the image half-spaceusing the power dissipated in the decaying wave normalized

field expansion term. Therefore, the normalized Poyntin
vector for the true object total field a0 can be written as
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to the power in the normally incident field 2£0. Therefore, 2

in this case,({= %1(0). This power normalization more fmax= 2+ad)s" (22
clearly demonstrates the adverse impact of perturbational '

loss on the potential field growth. From Eqs(19) and(22), fna=2aS(0)max FromDs ) and

Equation (9), under the assumption tha=0, a’5 <1 Ds . the p(=aD) window for field growth while keeping
(perturbational loss and the plane wave not near cytaffd  low energy dissipation is a function of both the evanescent
Da?s8 < 1 (sufficiently small thicknegscan be approximated field attenuation constaiithroughk,o) and the material loss.

as The results using the approximations in E¢k7) and (20)
are shown as circles and crosses in Fig. 3. Figutasahd
8eP(1-e D) 4(b) also show the good agreement between the perturba-
$H(0) = a(2+—az)5-' (17) tional treatment of Eqs(17) and (20) (circley and the nu-
! merical simulation(solid lines.
Using Eq.(17), the maximum 0fS,(0) occurs when Field growth with propagating fields can occur in either

RH, or LH materials when standing waves occur. In the case
1 of decaying fields in LH media, field growth in finite do-
DS, 0o = 2 In2 (18 mains is not excluded based on conservation of energy
through the Poynting vector. One must therefore conclude
or p=(a/2)In 2, and the value at the maximum is that it is plausible that field decay in RH media can be com-
pensated to some degree by LH media with appropriate pa-
2 rameters. The degree to which this can be accomplished is a
m- (19 function of the lens material and geometry, and this can be
! evaluated using power and field growth metrics. Our under-
Use of Eq.(17) predicts the location and value &(0),, Standing of LH material implies that t_here must be some Io_ss.
for the parameters used in Fig. 3 nicely. We find it remark-Unfortunately, any amount of loss in the LH material will
able that the value dDs o, _is a constant. Under the same Preclude the possibility of a perfect lens. It may, however, be

assumptiongs, =0, a26 < 1m21xndDa25< 1), the field growth possible to build a better lens using LH material. In the case
function in Eqr.(6)’beclomes G of a curved surface to achieve magnification, by assuming a

locally planar geometry, i.e., a large radius of curvature, the
conclusions regarding field growth in the planar geometry

16 _ 16 N
f= [—(2 +a2)25i2e ZD] {1 + —(2 +a2)25i2e 4D:| (20 apply.

Using Eq.(20), the maximum off occurs at

Si(O)max=
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